
Rank Metric Codes and related Structures

Yue Zhou

July 5, 2017

The 2nd International Workshop on Boolean Functions and their Applications (BFA)



Outline

Introduction

Maximum rank distance codes

Quadratic bent-Negabent functions

Vectorial quadratic bent functions

Exceptional scattered polynomials

1/34



Introduction



Rank metric codes

Definition

The rank metric on Km×n is defined by

d(A,B) = rank(A− B)

for A,B ∈ Km×n.

• It is not difficult to show that

rank(A) + rank(B) > rank(A + B).

• C ⊆ Km×n is a rank metric code.

• The minimum distance of C is

d(C) = min
A,B∈C,A 6=B

{d(A,B)}.
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Rank metric codes

We are interested in C with extreme properties (#C and d(C)):

• Maximum rank distance (MRD) codes.

• (Pre)quasifield, translation planes.

• Splitting dimensional dual hyperovals.

• Quadratic APN functions.

• Vectorial (quadratic) bent functions.

• Scattered linear sets.

• · · · .

Applications:

• Construction of subspace codes in network coding.

• McEliece cryptosystem.

• · · · .
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Definition

Two rank metric codes C1 and C2 ⊆ Km×n are equivalent

if there

are A ∈ GL(m,K), B ∈ GL(n,K), C ∈ Km×n and γ ∈ Aut(K)

such that

C2 = {AX γB + C : X ∈ C1},

where X γ := (xγij ).

• (A,B,C , γ) is an isometry over Km×n.

• When m = n, another definition of equivalence:

AX γB + C or A(X γ)TB + C .

• If C1 and C2 are linear over K, then we can assume that

C = O.

• When C1 = C2, all (A,B,C , γ) form the automorphism group.
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Maximum rank distance codes



Maximum rank distance codes

• Let C ⊆ Fm×n
q .

• We assume that m 6 n.

• When d(C) = d , it is well-known that (Singleton bound)

#C 6 qn(m−d+1).
• Proof: k := m − d + 1, look at any k rows of

c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

...

cm1 cm2 · · · · · ·

 .

• When the equality holds, we call C a maximum rank distance

(MRD for short) code.

• How to construct MRD codes?
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Gabidulin codes

Definition

A linearized polynomial (q-polynomial) is in Fqn [X ] of the form

a0X + a1X
q + · · ·+ aiX

qi + · · · .

Let L(n,q)[X ] denote all linearized polynomials in Fqn [X ].

• L(n,q)[X ]/(X qn − X ) ∼= EndFq(Fqn).

• Gabidulin codes (k = n − d + 1, m = n)

G = {a0X + a1X
q + . . . ak−1X

qk−1
: a0, a1, . . . , ak−1 ∈ Fqn}.

. For each f ∈ G, f has at most qk−1 roots.

. #G = qnk = qn(m−d+1) with d = m − k + 1.

. Gabidulin codes are Fqn -linear MRD codes.
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Known families of MRD codes (d = m = n)

When m = n = d (k = 1), G = {a0 ∗ X : a0 ∈ Fqn}.

MRD codes C and the following algebraic/geometric objects are

equivalent.

• (Pre)quasifield Q;

. When C is Fq-linear, Q is a (pre)semifield.

• Spreads.

There are a considerable amount of inequivalent quasifields and

semifields. In particular, for q = 2m, there are exponentially many

inequivalent ones (Kantor).
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Known families of Fq-linear MRD codes (d ≤ m = n)

Let m, n, k, s ∈ Z+, gcd(n, s) = 1, k < m and q a power of prime.

(generalized) twisted Gabidulin codes [Sheekey 2016]:

Hk,s(η, h) = {a0X+· · ·+ak−1X
qs(k−1)

+ηaq
h

0 X qsk : a0, . . . , ak−1 ∈ Fqn},

where h ∈ Z+ and η ∈ Fqn is such that Nqsn/qs (η) 6= (−1)nk .

• Hk,s(0, 6 ) is a Gabidulin code [Delsarte 1978], [Gabidulin

1985], [Kshevetskiy and Gabidulin 2005].

• When q = 2, η must be 0.

• The equivalence between different members and the

automorphism groups can be completely determined

(Lunardon, Trombetti, Z)
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Known families of MRD codes (d ≤ m = n)

Nonlinear families:

1. Size q2n [Cossidente, Marino, Pavese 2016] [Durante,

Siciliano].

2. Slight modifications of twisted Gabidulin codes [Otal and

Özbudak 2016].

Question

Find more new MRD codes for d ≤ m = n.
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Known families of MRD codes (d ≤ m < n)

1. Puncturing n × n MRD codes F :

Take Fq-linearly

independent elements α1, . . . , αm ∈ Fqn . Then

C = {(f (α1), · · · , f (αm))T : f ∈ F}

2. For k = m − d + 1, randomly generate MRD codes

[Neri,Trautmann,Randrianarisoa,Rosenthal,2016].

Pr > 1− kqkm−n.

3. Twisting construction using chains of subfields [Puchinger,

Nielsen, Sheekey].

4. Using maximum scattered linear sets [Csajbók, Marino,

Polverino, Zullo].

5. Other constructions [Trautmann, Marshall 2016].
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Known families of MRD codes (d ≤ m < n)

How many inequivalent MRD codes are there in Fm×n
q ?

• By looking at Gabidulin codes for different U = 〈α1, · · · , αm〉,
we [Schmidt, Z] can show that this number

≥
(q − 1) [ n

m ]q
n(qn − 1)

.

• Proved by investigating their right nuclei and middle nuclei.
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Nuclei of rank metric codes

Definition

For rank metric codes in Km×n:

Right nucleus: Nr (C) = {Y ∈ Kn×n : CY ∈ C for all C ∈ C}.

Middle nucleus: Nm(C) = {Z ∈ Km×m : ZC ∈ C for all C ∈ C}.

• When C is a spreadset defining a semifield S, then Nm(C) and

Nr (C) correspond to the middle nucleus and the right nucleus

of S respectively.

• For MRD codes with d < m, we can also define the left

nucleus which is always K.

• Not invariant for nonlinear rank metric codes.
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Nuclei of rank metric codes

• For two equivalent linear rank metric codes C1 and C2 in

Km×n, their right (resp. middle) nuclei are also equivalent.

C2 = {AX γB : X ∈ C1} ⇒ Z ∈ Nm(C1) iff AZγA−1 ∈ Nm(C2)

If γ = id and C1 = C2, then A ∈ NGL(m,q)(Nm(C)).

• For (generalized) Gabidulin codes

Gs = {a0X + a1X
qs + . . . ak−1X

qs(k−1)
: a0, . . . , ak−1 ∈ Fqn},

Nr (Gs) = {g : g ◦ f ∈ Gs for all f ∈ Gs} ∼= Fqn ,

Nm(Gs) = {g : f ◦ g ∈ Gs for all f ∈ Gs} ∼= Fqn .
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Quadratic bent-Negabent functions



Maximum rank metric codes with restrictions

• Restrictions: Symmetric, symplectic, hermitian...

• Given minimum distance d , the upper bound of C is not

completely clear.

For instance:

• Let C be an additive d-code consisting of m ×m symmetric

matrix over Fq. If 2 - q (2|q and 2 - d or d = m), then

#C ≤

{
qm(m−d+2)/2, if m − d is even;

q(m+1)(m−d+1)/2, if m − d is odd.

• Proved by using association schemes. The upper bound is

tight. (Schmidt 2010, 2015)

14/34



Maximum rank metric codes with restrictions

• Restrictions: Symmetric, symplectic, hermitian...

• Given minimum distance d , the upper bound of C is not

completely clear.

For instance:

• Let C be an additive d-code consisting of m ×m symmetric

matrix over Fq. If 2 - q (2|q and 2 - d or d = m), then

#C ≤

{
qm(m−d+2)/2, if m − d is even;

q(m+1)(m−d+1)/2, if m − d is odd.

• Proved by using association schemes. The upper bound is

tight. (Schmidt 2010, 2015)

14/34



Maximum rank metric codes with restrictions

• Restrictions: Symmetric, symplectic, hermitian...

• Given minimum distance d , the upper bound of C is not

completely clear.

For instance:

• Let C be an additive d-code consisting of m ×m symmetric

matrix over Fq. If 2 - q (2|q and 2 - d or d = m), then

#C ≤

{
qm(m−d+2)/2, if m − d is even;

q(m+1)(m−d+1)/2, if m − d is odd.

• Proved by using association schemes. The upper bound is

tight. (Schmidt 2010, 2015)

14/34



Maximum rank metric codes with restrictions

• Restrictions: Symmetric, symplectic, hermitian...

• Given minimum distance d , the upper bound of C is not

completely clear.

For instance:

• Let C be an additive d-code consisting of m ×m symmetric

matrix over Fq. If 2 - q (2|q and 2 - d or d = m), then

#C ≤

{
qm(m−d+2)/2, if m − d is even;

q(m+1)(m−d+1)/2, if m − d is odd.

• Proved by using association schemes. The upper bound is

tight. (Schmidt 2010, 2015)

14/34



Maximum rank metric codes with restrictions

• Restrictions: Symmetric, symplectic, hermitian...

• Given minimum distance d , the upper bound of C is not

completely clear.

For instance:

• Let C be an additive d-code consisting of m ×m symmetric

matrix over Fq. If 2 - q (2|q and 2 - d or d = m), then

#C ≤

{
qm(m−d+2)/2, if m − d is even;

q(m+1)(m−d+1)/2, if m − d is odd.

• Proved by using association schemes. The upper bound is

tight. (Schmidt 2010, 2015)

14/34



• Quadratic APN functions, AB functions, (vectorial) bent

functions... can be considered as rank metric codes with

special properties.

• f : Fn
p → Fm

p is quadratic if δf ,a : x 7→ f (x + a)− f (x)− f (a)

is Fp-linear for all a.

• Quadratic APN: kernel of δf ,a is of dimension 1 for a ∈ F∗2n .

• {δf ,a : a ∈ F2n} is a subspace of binary n × n matrices of rank

n − 1.

• Quadratic AB: the set of alternating bilinear forms

{Tr(c(f (x + y)− f (x)− f (y))) : c ∈ F∗2n} defines a subspace

of alternating binary n × n matrices of rank n − 1.

• See Edel and Dempwolff’s work: Nuclei, dimensional dual

hyperovals . . .
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Quadratic bent functions

For f : Fn
2 → F2,

• it is bent if x 7→ f (x + a)− f (x) is balanced for all nonzero a

(n has to be even).

• it is quadratic bent if the alternating matrix associated with

f (x + y)− f (x)− f (y) is nonsingular.

• all quadratic bent functions are (extended affine) equivalent

to f (x1, · · · , x2m) = x1x2 + x3x4 + · · ·+ x2m−1x2m.
0 1 . . . 0 0

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

0 0 . . . 1 0


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Quadratic bent-Negabent functions

For f : Fn
2 → F2,

• it is quadratic negabent if the associated alternating matrix M

is such that M + I is nonsingular.

• How many quadratic bent-negabent functions? (Pott, Parker

2008)

• The number of bent-negabent quadratic forms on F2m
2 is

1

2m

m∑
i=0

(−1)i 2i(i−1)
[
m

i

]
4

m−i∏
k=1

(22k−1 − 1)2.
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Quadratic bent-Negabent functions

Let Xj stand for the n × n alternating matrices of rank j over Fq

and X =
⋃

Xj = Fn×n
q .

• f is bent-negabent if and only if M and M + I + J are both

nonsingular (Pott, Parker 2008).

• M and M + I + J are both alternating.

• We count NX (r , s, k) =
∣∣{(A,B) ∈ Xr × Xs : A + B ∈ Xk}

∣∣.
• # quadratic bent-negabent functions = NX (n,n,n)

|Xn| .
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Quadratic bent-Negabent functions

•

NX (r , s, k) =
∣∣{(A,B) ∈ Xr × Xs : A + B ∈ Xk}

∣∣
=

1

|X |
∑
φ∈X̂

∑
A∈Xr

φ(A)
∑
B∈Xs

φ(B)
∑
C∈Xk

φ(C ).

• All X0, X1, · · · ,Xn form a partition of Fn×n
q and it is a

translation scheme.

•

NX (r , s, k) =
1

|X |

m∑
i=0

|X̂i | Pr (i)Ps(i)Pk(i).

• The multiplicities X̂i and the eigenvalues Pr (i) are known.
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Vectorial quadratic bent functions



Vectorial quadratic bent functions

• bent-negabent: M, I + J, M + I + J are nonsingular.

• {0,M, I + J,M + I + J} is an F2-subspace of dimension 2 in

Fn×n
2 .

• Can we have larger subspaces U ⊆ X such that each

A ∈ U \ {0} is nonsingular?

• Yes, we can get it from vectorial quadratic bent functions.

• A (2m, k)-vectorial bent function is a function F : F2m
2 → Fk

2

such that

#{(x , y) : F (x + a, y + b)− F (x , y) = c} = 22m−k

for all c and (a, b) 6= (0, 0).
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Vectorial quadratic bent functions

• Vectorial quadratic bent function F : F2m
2 → Fk

2 ⇔
k-subspaces U ⊆ X satisfying that each A ∈ U \ {0} is

nonsingular.

• k = 1 only one quadratic bent function up to equivalence.

• k = 2: total number is known. Inequivalent ones?

• It is well known k ≤ m.

• k = m: rank metric codes with extreme property (d = 2m

and #C is maximum). How many inequivalent ones?

• EA-Equivalence: G = L ◦ F ◦ L′ + L̃, where L and L′ are affine

permutations and L̃ is affine.
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Vectorial quadratic bent functions for k = m

We can show that there are many inequivalent k-vectorial

quadratic bent functions by using semifields.

• Take F (x , y) = x ∗ y where ∗ stands for the multiplication of

a semifield of order 2m.

• Hence x ∗ y =
∑

0≤i≤j<n cijx
2i y2

j
for some cij ∈ F2m .

• It is bent:

F (x + a, b + y)− F (x , y)− F (a, b) = x ∗ b + a ∗ y .

• There are exponentially many inequivalent (isotopic)

semifields, and we want to use them to derive inequivalent

(EA) vectorial bent functions.

22/34



Vectorial quadratic bent functions for k = m

We can show that there are many inequivalent k-vectorial

quadratic bent functions by using semifields.

• Take F (x , y) = x ∗ y where ∗ stands for the multiplication of

a semifield of order 2m.

• Hence x ∗ y =
∑

0≤i≤j<n cijx
2i y2

j
for some cij ∈ F2m .

• It is bent:

F (x + a, b + y)− F (x , y)− F (a, b) = x ∗ b + a ∗ y .

• There are exponentially many inequivalent (isotopic)

semifields, and we want to use them to derive inequivalent

(EA) vectorial bent functions.

22/34



Vectorial quadratic bent functions for k = m

We can show that there are many inequivalent k-vectorial

quadratic bent functions by using semifields.

• Take F (x , y) = x ∗ y where ∗ stands for the multiplication of

a semifield of order 2m.

• Hence x ∗ y =
∑

0≤i≤j<n cijx
2i y2

j
for some cij ∈ F2m .

• It is bent:

F (x + a, b + y)− F (x , y)− F (a, b) = x ∗ b + a ∗ y .

• There are exponentially many inequivalent (isotopic)

semifields, and we want to use them to derive inequivalent

(EA) vectorial bent functions.

22/34



Vectorial quadratic bent functions for k = m

We can show that there are many inequivalent k-vectorial

quadratic bent functions by using semifields.

• Take F (x , y) = x ∗ y where ∗ stands for the multiplication of

a semifield of order 2m.

• Hence x ∗ y =
∑

0≤i≤j<n cijx
2i y2

j
for some cij ∈ F2m .

• It is bent:

F (x + a, b + y)− F (x , y)− F (a, b) = x ∗ b + a ∗ y .

• There are exponentially many inequivalent (isotopic)

semifields, and we want to use them to derive inequivalent

(EA) vectorial bent functions.

22/34



Vectorial quadratic bent functions for k = m

We can show that there are many inequivalent k-vectorial

quadratic bent functions by using semifields.

• Take F (x , y) = x ∗ y where ∗ stands for the multiplication of

a semifield of order 2m.

• Hence x ∗ y =
∑

0≤i≤j<n cijx
2i y2

j
for some cij ∈ F2m .

• It is bent:

F (x + a, b + y)− F (x , y)− F (a, b) = x ∗ b + a ∗ y .

• There are exponentially many inequivalent (isotopic)

semifields, and we want to use them to derive inequivalent

(EA) vectorial bent functions.

22/34



• Let Li be additive map over Fm
2 for i = 0, 1, 2, 3. The map

(x , y) 7→ (L0(x) + L1(y), L2(x) + L3(y)) is a permutation on

F2m
2 , M is an additive permutation on Fm

2 .

Then

G : (x , y) 7→ M ◦ F (L0(x) + L1(y), L2(x) + L3(y))

is again (2m,m)-vectorial bent and F and G are equivalent.

• Assume that F (x , y) = x ∗ y and G (x , y) = x ? y are

equivalent.

• F (L0(x) + L1(y), L2(x) + L3(y)) =

L0(x) ∗ L2(x) + L1(y) ∗ L3(y) + L0(x) ∗ L3(y) + L1(y) ∗ L2(x).

• M(L0(x) ∗ L2(x)) and M(L1(y) ∗ L3(y)) must be zero.

• One of L0 and L2 (resp. L1 and L3) must be the zero map.
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• (x , y) 7→ (L0(x) + L1(y), L2(x) + L3(y)) is a permutation.

• G (x , y) = M ◦ F (L0(x), L3(y)) or M ◦ F (L1(y), L2(x)).

• x ? y = M(L0(x) ∗ L3(y)) or M(L1(y) ∗ L2(x)).

• (Fm
2 ,+, ?) is isotopic to (Fm

2 ,+, ∗) or (Fm
2 ,+, ∗̂), where

x ∗̂y = y ∗ x .

• Exactly the same as the isometry defined on Fm×m
2 .

• Using Kantor’s commutative semifields, we get the same

number of inequivalent (2m,m)-vectorial bent functions.

• Kantor’s construction does not work for m = 2`.
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Exceptional scattered polynomials



Classify MRD codes

For semifields, we have classification results with certain

assumptions on Nm, Nr and Nl .

Can we classify MRD codes?

We restrict ourselves to MRD codes in Fn×n
q :

• For (generalized) Gabidulin codes

Gs = {a0X + a1X
qs + . . . ak−1X

qs(k−1)
: a0, . . . , ak−1 ∈ Fqn},

Nr (Gs) = {g : g ◦ f ∈ Gs for all f ∈ Gs} ∼= Fqn ,

Nm(Gs) = {g : f ◦ g ∈ Gs for all f ∈ Gs} ∼= Fqn .

• MRD codes with Nr = Nm = Fqn are Gs .

• For Nr = Fqn , there are at least:

Hk,s(η, h) = {a0X+· · ·+ak−1X
qs(k−1)

+ηa0X
qsk : a0, . . . , ak−1 ∈ Fqn},

where η ∈ Fqn is such that Nqsn/qs (η) 6= (−1)nk .
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Classify MRD codes

We restrict ourselves to MRD codes of minimum distance n − 1 in

Fn×n
q with Nr = Fqn .

F = {aX + bf (X ) : a, b ∈ Fqn}.

H2,s(η, h) = {a0X + a1X
qs + ηa0X

q2s : a0, a1 ∈ Fqn}

= {aX + η′bX qs + bX q(n−1)s
: a, b ∈ Fqn}

• F is MRD if and only if ker(f ) ≤ q and

f (x)

x
=

f (y)

y
⇔ y

x
∈ Fq.

• A polynomial f satisfying the second condition is called

scattered polynomial.
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Classify scattered polynomials

• Maximum scattered linear set (MSLS) over PG(1, qn):

U = {(x , f (x)) : x ∈ Fqn},

L(U) = {〈u〉Fqn
: u ∈ U \ {0}} =

{(
1,

f (x)

x

)
: x ∈ F∗qn

}
.

• Hence it is equivalent to

f (x)

x
=

f (y)

y
⇔ y

x
∈ Fq.

• The equivalence of MSLS is more complicated.

• By using finite geometry argument, n = 4 is completely

classified [Csajbók, Zanella]

• n = 5 is almost done [Csajbók, Marino, Polverino].
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27/34



Classify scattered polynomials

• Maximum scattered linear set (MSLS) over PG(1, qn):

U = {(x , f (x)) : x ∈ Fqn},

L(U) = {〈u〉Fqn
: u ∈ U \ {0}} =

{(
1,

f (x)

x

)
: x ∈ F∗qn

}
.

• Hence it is equivalent to

f (x)

x
=

f (y)

y
⇔ y

x
∈ Fq.

• The equivalence of MSLS is more complicated.

• By using finite geometry argument, n = 4 is completely

classified [Csajbók, Zanella]
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Classify scattered polynomials

• A typical problem for APN functions and planar functions is

to classify the “exceptional” ones.

• A polynomial f ∈ F2n [X ] is APN (planar etc.) over F2mn for

infinitely many m.

• Exceptional APN power maps are X 2i+1 and X 4i−2i+1

(McGuire, Hernando 2011).

• Exceptional planar monomial, planar polynomials, APN

polynomials, monomial hyperovals (Aubry, Caullery, Janwa,

Jedlicka, Hernando, McGuire, Leducq, Rodier, Schmidt,

Wilson, Z, Zieve)
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Classify scattered polynomials

• We can also classify scattered polynomials.

• The unique known family:

H2,s(η, h) = {a0X + a1X
qs + ηa0X

q2s : a0, a1 ∈ Fqn}

= {aX + η′bX qs + bX q(n−1)s
: a, b ∈ Fqn}

• A slight modification:

f (x)

xqs
=

f (y)

yqs
⇔ y

x
∈ Fq.

• We call a polynomial satisfying the above condition a

scattered polynomial of index s.
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Classify scattered polynomials

We (Bartoli, Z) can prove

• For q ≥ 4, X qk is the unique exceptional scattered monic

polynomial of index 0.

• The only exceptional scattered monic polynomials f of index 1

over Fqn are X and bX + X q2 where b ∈ Fqn satisfying

Normqn/q(b) 6= 1. When q = 2, f (X ) must be X .
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Sketch of the proof

• The curve F :

F (X ,Y ) =
f (X )Y qs − f (Y )X qs

X qY − XY q
= 0

in PG(2, qn) contains no affine point (x , y) such that y
x /∈ Fq.

• Use Hasse-Weil theorem to show there exist other points.

• We have to show that F contains absolutely irreducible

component over Fqn .
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Sketch of the proof

• Assume that F = AB. If F has no absolutely irreducible

component, we have a lower bound on (degA)(degB).

• By analyzing I (P,A ∩ B), we have an upper bound on∑
P I (P,A ∩ B).

• Use Bézout’s Theorem
∑

P I (P,A ∩ B) = (degA)(degB) to

get contradiction.

• The most involved part is to estimate I (P,A ∩ B) where P is

a singular point.

• When s = 1, the old approach does not work. We have to

investigate the “branches” of F centered at P.
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• When s = 1, the old approach does not work. We have to

investigate the “branches” of F centered at P.
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Sketch of the proof

• A branch representation is (x(t), y(t), z(t)) ∈ PG(2,K((t))),

where K((t)) stands for the field of rational functions of the

formal power series. (x(0), y(0), z(0)) is its center.

• A branch is an equivalence class of different representations.

• A branch of a plane curve is a branch whose representation

are zero of this curve.

• I (P,G ∩ F) =
∑

γ I (P,G ∩ γ) where γ runs over all branches

of F centered at P.

• Use local quadratic transform F 7→ F ′, there exists a bijection

between the branches of F centered at the origin and the

branches of F ′ centered at an affine point on X = 0.
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Classify scattered polynomials

For index s = 0:

• For q ≥ 4, X qk is the unique exceptional scattered monic

polynomial of index 0.

• For q = 2, 3, we can prove the exceptional scattered monic

polynomial of index 0 have at most 2 or 3 consecutive terms.

But we cannot give a complete classification.

For index s ≥ 1:

• The only exceptional scattered monic polynomials f of index 1

over Fqn are X and bX + X q2 where b ∈ Fqn satisfying

Normqn/q(b) 6= 1. When q = 2, f (X ) must be X .

• For index s > 1, our approach cannot offer a complete

classification.
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Thanks for your attention!
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