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for A, B € Kmxn.

e It is not difficult to show that

rank(A) + rank(B) > rank(A + B).
e C CKM™Mis a
e The of Cis

d(C) =, ;min_ {d(A,B)}.
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are A € GL(m,K), B € GL(n,K), C € K™" and v € Aut(K)
such that

C, ={AX"B+ C: X € (1},

where X7 := (x;).

e (A, B, C,~) is an isometry over K™*".
e When m = n, another definition of equivalence:
AX'B+ Cor AX)TB+C.

e If C; and C» are linear over K, then we can assume that

C=0.

e When C; = Cy, all (A, B, C,~) form the automorphism group.
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Maximum rank distance codes

o Let C C Fg””.
e We assume that m < n.

When d(C) = d, it is well-known that (Singleton bound)

#C < qn(m—d+1)_

e Proof: k:=m—d+ 1, look at any k rows of
i1 €12 -+ Cip
C1 €2 -+ Cp
Cm1 Cm2

e When the equality holds, we call C a maximum rank distance
(MRD for short) code.

How to construct MRD codes?
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g= {aoX + a1 X9+ ... ak,quFl 140,d1,...,dk—1 € ]Fqn}.

> For each f € G, f has at most g*~? roots.
b #G = g™ = ¢"("=9t1) with d = m — k + 1.
> Gabidulin codes are MRD codes.
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When m=n=d (k=1), G={ap+ X 1 a9 € Fgn}.

MRD codes C and the following algebraic/geometric objects are
equivalent.

e (Pre)quasifield Q;

> When C is Fg-linear, Q is a (pre)semifield.
e Spreads.

There are a considerable amount of inequivalent quasifields and
semifields. In particular, for g = 2™, there are exponentially many
inequivalent ones (Kantor).
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Hi,s(n, h) = {ao X+ Fa_1 X7 “ 1)4—/138 X9 . a0,... a1 € Fon},

where h € Z7" and € Fgn is such that Ny qs(n) # (—1)".

e Hy (0, /) is a Gabidulin code [Delsarte 1978], [Gabidulin
1985], [Kshevetskiy and Gabidulin 2005].

e When g = 2, n must be 0.

e The equivalence between different members and the
automorphism groups can be completely determined
(Lunardon, Trombetti, Z)

8/34



Known families of MRD codes (d < m = n)

Nonlinear families:

9/34



Known families of MRD codes (d < m = n)

Nonlinear families:

1. Size g [Cossidente, Marino, Pavese 2016] [Durante,
Siciliano].

9/34



Known families of MRD codes (d < m = n)

Nonlinear families:

1. Size g [Cossidente, Marino, Pavese 2016] [Durante,
Siciliano].

2. Slight modifications of twisted Gabidulin codes [Otal and
Ozbudak 2016].

9/34



Known families of MRD codes (d < m = n)

Nonlinear families:

1. Size g [Cossidente, Marino, Pavese 2016] [Durante,
Siciliano].

2. Slight modifications of twisted Gabidulin codes [Otal and
Ozbudak 2016].

Question

Find more new MRD codes for d < m = n.
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Pr > 1— kgm™=".

3. Twisting construction using chains of subfields [Puchinger,
Nielsen, Sheekey].

4. Using maximum scattered linear sets [Csajbdk, Marino,
Polverino, Zullo].

5. Other constructions [Trautmann, Marshall 2016].
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e By looking at Gabidulin codes for different U = (a1, -+, am),
we [Schmidt, Z] can show that this number

(a-1)[nl,
n(q"—1)

e Proved by investigating their right nuclei and middle nuclei.

11/34



Nuclei of rank metric codes

Definition
For rank metric codes in K™*":
: N(C)={Y e K"™" : CY €C for all C € C}.

12/34



Nuclei of rank metric codes

Definition
For rank metric codes in K™*":
: N(C)={Y e K"™" : CY €C for all C € C}.

. Np(C) = {Z e K™M: ZC € C for all C € C}.

12/34



Nuclei of rank metric codes

Definition
For rank metric codes in K™*":
: N(C)={Y e K"™" : CY €C for all C € C}.

. Np(C) = {Z e K™M: ZC € C for all C € C}.

e When C is a spreadset defining a semifield S, then N,,(C) and
N,(C) correspond to the middle nucleus and the right nucleus
of S respectively.

12/34



Nuclei of rank metric codes

Definition
For rank metric codes in K™*":

L N,(C)={Y € KM : CY €C for all C €C}.
. Np(C) = {Z e K™M: ZC € C for all C € C}.

e When C is a spreadset defining a semifield S, then N,,(C) and
N,(C) correspond to the middle nucleus and the right nucleus
of S respectively.

e For MRD codes with d < m, we can also define the left
nucleus which is always K.

12/34



Nuclei of rank metric codes

Definition
For rank metric codes in K™*":
: N(C)={Y e K"™" : CY €C for all C € C}.

. Np(C) = {Z e K™M: ZC € C for all C € C}.

e When C is a spreadset defining a semifield S, then N,,(C) and
N,(C) correspond to the middle nucleus and the right nucleus
of S respectively.

e For MRD codes with d < m, we can also define the left
nucleus which is always K.

° invariant for nonlinear rank metric codes.
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K™ their right (resp. middle) nuclei are also equivalent.
Co={AX"B: X €Ci} = Z € Npn(C1) iff AZ7A™L € N,p(Co)

If v =id and C1 = C2, then A € Ngi(m,q)(Nm(C)).

e For (generalized) Gabidulin codes
gs = {aOX + alX"s + ... a_1 X9

s(k—1)
1a0,...,dk—1 € Fqn}’

N(Gs)={g:gofeGsforall feG}=Fp,
Nm(Gs) ={g:fogeGsforall f € Gs} = Fgn.

13/34



Quadratic bent-Negabent functions




Maximum rank metric codes with restrictions

e Restrictions: Symmetric, symplectic, hermitian...

14/34



Maximum rank metric codes with restrictions

e Restrictions: Symmetric, symplectic, hermitian...

e Given minimum distance d, the upper bound of C is not
completely clear.

14/34



Maximum rank metric codes with restrictions

e Restrictions: Symmetric, symplectic, hermitian...

e Given minimum distance d, the upper bound of C is not
completely clear.

For instance:

14/34



Maximum rank metric codes with restrictions

e Restrictions: Symmetric, symplectic, hermitian...
e Given minimum distance d, the upper bound of C is not
completely clear.
For instance:

e Let C be an additive d-code consisting of m x m symmetric
matrix over Fq. If 21 q (2|g and 21 d or d = m), then

o gm(m—d+2)/2. if m— d is even;
#e < gmt)(m=d+1)/2 " if m _ d is odd.

14/34



Maximum rank metric codes with restrictions

e Restrictions: Symmetric, symplectic, hermitian...
e Given minimum distance d, the upper bound of C is not
completely clear.
For instance:

e Let C be an additive d-code consisting of m x m symmetric
matrix over Fq. If 21 q (2|g and 21 d or d = m), then

o gm(m—d+2)/2. if m— d is even;
#e < gmt)(m=d+1)/2 " if m _ d is odd.

e Proved by using association schemes. The upper bound is
tight. (Schmidt 2010, 2015)
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is Fp-linear for all a.

e Quadratic APN: kernel of d¢ , is of dimension 1 for a € [F5,.

o {0f,:a€ Fon} is a subspace of binary n x n matrices of rank
n—1.

e Quadratic AB: the set of alternating bilinear forms
{Tr(c(f(x+y)— f(x)—f(y))): c € F5,} defines a subspace
of alternating binary n x n matrices of rank n — 1.
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e Quadratic APN functions, AB functions, (vectorial) bent
functions... can be considered as rank metric codes with
special properties.

o f:Fp — F7is quadratic if §r 5 : x = f(x + a) — f(x) — f(a)
is Fp-linear for all a.

e Quadratic APN: kernel of d¢ , is of dimension 1 for a € [F5,.

o {0f,:a€ Fon} is a subspace of binary n x n matrices of rank
n—1.

e Quadratic AB: the set of alternating bilinear forms
{Tr(c(f(x+y)— f(x)—f(y))): c € F5,} defines a subspace
of alternating binary n x n matrices of rank n — 1.

e See Edel and Dempwolff's work: Nuclei, dimensional dual
hyperovals ...
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Quadratic bent functions

For f : F§ — IFy,

e it is bent if x — f(x + a) — f(x) is balanced for all nonzero a

(n has to be even).
e it is quadratic bent if the alternating matrix associated with
f(x+y) — f(x) — f(y) is nonsingular.

e all quadratic bent functions are (extended affine) equivalent

to f(x1, -, Xom) = x1x2 + X3Xa + + -+ + Xom—1X2m-
01 ... 00
1 0 ... 00
0 0
0 0
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Quadratic bent-Negabent functions

For f : F§ — TFp,

e it is quadratic negabent if the associated alternating matrix M
is such that M + [ is nonsingular.

e How many quadratic bent-negabent functions? (Pott, Parker
2008)

e The number of bent-negabent quadratic forms on IF%'" is

1 . i(i—1) ey 2k—1 2
72 )2 [ ] [T =12
4 k=1
(Pott, Schmidt, Z 2016)
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Let X; stand for the n x n alternating matrices of rank j over Fg
and X = JX; = Fg*".

e f is bent-negabent if and only if M and M + /| + J are both
nonsingular (Pott, Parker 2008).

e M and M+ [ + J are both alternating.
o We count Nx(r,s, k) = [{(A,B) € X, x Xs : A+ B € Xc}|.

e #£ quadratic bent-negabent functions = le(;’?’").
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Quadratic bent-Negabent functions

Nx(r,s,k) = [{(A,B) € X, x Xs : A+ B € Xi}|

= YA Y 6B) Y 4(C)

HeX AEX: BEXs CeXy
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Quadratic bent-Negabent functions

[ ]
Nx(r,s, k) = ]{(A, B)e X, xXs: A+ Be Xk}‘
1
=X DDA D (B) Y 4(0).
beX AEX; BeXs CeXi
o All Xo, X1,--+, X, form a partition of Fg*" and it is a

translation scheme.
1 <o N
Nx(r,s, k) = X D IXil Pr(i)Ps(i) Pi(i)-
i=0

e The multiplicities X; and the eigenvalues P.(i) are known.
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e bent-negabent: M, | +J, M + [ 4 J are nonsingular.
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Vectorial quadratic bent functions

e bent-negabent: M, | +J, M + [ 4 J are nonsingular.

{0, M, I +J, M+ |+ J} is an Fa-subspace of dimension 2 in
Fo*".

Can we have larger subspaces U C X such that each
A € U\ {0} is nonsingular?

e Yes, we can get it from vectorial quadratic bent functions.

A (2m, k)-vectorial bent function is a function F : F3™ — F%
such that

#{(x,y): F(x+a,y + b) — F(x,y) = c} = 2?m &
for all ¢ and (a, b) # (0,0).
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Vectorial quadratic bent functions

e Vectorial quadratic bent function F : F3" — F% <
k-subspaces U C X satisfying that each A€ U\ {0} is
nonsingular.

e k =1 only one quadratic bent function up to equivalence.
e k = 2: total number is known. Inequivalent ones?
e It is well known k < m.

e k = m: rank metric codes with extreme property (d =2m
and #C is maximum). How many inequivalent ones?

e EA-Equivalence: G = Lo Fol' + L, where L and L' are affine
permutations and L is affine.
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Vectorial quadratic bent functions for k = m

We can show that there are many inequivalent k-vectorial
quadratic bent functions by using semifields.
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Vectorial quadratic bent functions for k = m

We can show that there are many inequivalent k-vectorial
quadratic bent functions by using semifields.

e Take F(x,y) = x * y where * stands for the multiplication of
a semifield of order 2.

i
e Hence xxy =3 o icicn ciix? y? for some ¢;; € Fom.

e |t is bent:

F(x+a,b+y)— F(x,y)— F(a,b)=xxb+axy.

e There are exponentially many inequivalent (isotopic)
semifields, and we want to use them to derive inequivalent
(EA) vectorial bent functions.
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e Let L; be additive map over F7" for i =0,1,2,3. The map
(x,y) = (Lo(x) + L1(y), L2(x) + L3(y)) is a permutation on
F2™, M is an additive permutation on FJ'.
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(x,¥) — (Lo(x) + Li(y), L2(x) + L3(y)) is a permutation on
F%m, M is an additive permutation on F5'. Then

G : (x,y) = Mo F(Lo(x) + Li(y), L2(x) + Ls(y))
is again (2m, m)-vectorial bent and F and G are equivalent.

e Assume that F(x,y) = x*y and G(x,y) = xxy are
equivalent.

o F(Lo(x)+ Li(y), La(x) + L3(y)) =
Lo(x) * L2(x) + L1(y) * L3(y) + Lo(x) * L3(y) + L1(y) * L2(x).
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Let L; be additive map over F7" for i = 0,1,2,3. The map
(x,¥) — (Lo(x) + Li(y), L2(x) + L3(y)) is a permutation on
F%m, M is an additive permutation on F5'. Then

G : (x,y) = Mo F(Lo(x) + Li(y), L2(x) + Ls(y))
is again (2m, m)-vectorial bent and F and G are equivalent.

Assume that F(x,y) = x*y and G(x,y) = xxy are
equivalent.

F(Lo(x) + Li(y), L2(x) + L3(y)

):
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Let L; be additive map over F7" for i = 0,1,2,3. The map
(x,¥) — (Lo(x) + Li(y), L2(x) + L3(y)) is a permutation on
F%m, M is an additive permutation on F5'. Then

G : (x,y) = Mo F(Lo(x) + Li(y), L2(x) + Ls(y))
is again (2m, m)-vectorial bent and F and G are equivalent.

Assume that F(x,y) = x*y and G(x,y) = xxy are
equivalent.

F(Lo(x) + Li(y), L2(x) + L3(y)

):
Lo(x) * L2(x) + L1(y) * L3(y) + Lo(x) * L3(y) + L1(y) * L2(x).

M(Lo(x) * La(x)) and M(Li(y) * L3(y)) must be zero.

One of Ly and Ly (resp. L1 and L3) must be the zero map.
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e (x,y)— (Lo(x) + Li(y), La(x) + L3(y)) is a permutation.
> G(X>Y) =Mo F(LO(X)> L3(y)) or Mo F(Ll(y)a L2(X))'
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XKy =y * X.
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(x,y) — (Lo(x) + Li(y), La(x) + L3(y)) is a permutation.
G(X>Y) =Mo F(LO(X)> L3(y)) or Mo F(Ll(y)a L2(X))'
xxy = M(Lo(x) x L3(y)) or M(L1(y) * Lo(x)).

(F2, +, ) is isotopic to (F5, +,*) or (F5', +, %), where

XKy =y * X.
Exactly the same as the isometry defined on F"*"".

Using Kantor's commutative semifields, we get the same
number of inequivalent (2m, m)-vectorial bent functions.
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(x,y) — (Lo(x) + Li(y), La(x) + L3(y)) is a permutation.
G(X>Y) =Mo F(LO(X)> L3(y)) or Mo F(Ll(y)a L2(X))'
xxy = M(Lo(x) x L3(y)) or M(L1(y) * Lo(x)).

(F2, +, ) is isotopic to (F5, +,*) or (F5', +, %), where

XKy =y * X.

Exactly the same as the isometry defined on F"*"".

Using Kantor's commutative semifields, we get the same
number of inequivalent (2m, m)-vectorial bent functions.

Kantor's construction does not work for m = 2.
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Exceptional scattered polynomials




Classify MRD codes

For semifields, we have classification results with certain

assumptions on Np,, N, and N,.
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Classify MRD codes

For semifields, we have classification results with certain
assumptions on Np,, N, and N,. Can we classify MRD codes?

We restrict ourselves to MRD codes in IE‘ZX”:

e For (generalized) Gabidulin codes
Gs = {a0X + aqus + . .oag1 X9
N.(Gs)={g:gof €Gsforall f € G} =Fy,

Nm(Gs) ={g:fogegsforall feGs}=Fgn.

s(k—1)
2d0,...,dk-1 € Fqn},

e MRD codes with N, = N, = Fgn are Gs.
e For N, = Fn, there are at least:
His(n, h) = {aoX+-- -+ak_1qu(k_1)+naquSk 2 ag,...,ak—1 € Fgn]

where 1) € Fgn is such that Nysn/qs(1) # (—1)"%.
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Classify MRD codes

We restrict ourselves to MRD codes of minimum distance n — 1 in
X q —
Fg™" with Ny = Fgn.

F={aX+bf(X):a,beFq}.
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Classify MRD codes

We restrict ourselves to MRD codes of minimum distance n — 1 in
X q —
Fg™" with Ny = Fgn.

F={aX+bf(X):a,beFq}.

Hao(n, h) = {a0X + a1 X% +napX 9" : ag, a1 € Fyn}
= {aX +7'bXT + bX9" : a,b € Fyo}

e F is MRD if and only if ker(f) < g and

X y X 7

e A polynomial f satisfying the second condition is called

scattered polynomial.
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Classify scattered polynomials

e Maximum scattered linear set (MSLS) over PG(1, g"):
U={(x,f(x)): x €Fgn},

L(U) = {{u}r,, s u € U\ {0}} = {<1f(xx))  x emgn}.
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Classify scattered polynomials

e Maximum scattered linear set (MSLS) over PG(1, g"):
U={(x,f(x)): x €Fgn},

L(U) = {{u}r,, s u € U\ {0}} = {<1f(xx))  x emgn}.

Hence it is equivalent to

f) _f) LY cp
% y X 7

e The equivalence of MSLS is more complicated.

By using finite geometry argument, n = 4 is completely
classified [Csajbdk, Zanella]

e n =15 is almost done [Csajbdk, Marino, Polverino].
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Classify scattered polynomials

e A typical problem for APN functions and planar functions is
to classify the “exceptional” ones.

e A polynomial f € F20[X] is APN (planar etc.) over Fomn for
infinitely many m.

e Exceptional APN power maps are X2'+1 apd x4 -2'+1
(McGuire, Hernando 2011).

e Exceptional planar monomial, planar polynomials, APN
polynomials, monomial hyperovals (Aubry, Caullery, Janwa,
Jedlicka, Hernando, McGuire, Leducq, Rodier, Schmidt,
Wilson, Z, Zieve)
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Classify scattered polynomials

e We can also classify scattered polynomials.
e The unique known family:

Has(n, h) = {a0X + a1 X7 + naquQS ap, a1 € Fgn}
— (aX +'bXT + bXT" 4 b e Fon
n q

e A slight modification:

f f
(X5) = ():) & i € Fy.
x4 yq X

e We call a polynomial satisfying the above condition a

scattered polynomial of index s.
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We (Bartoli, Z) can prove

e For g > 4, X9 is the unique exceptional scattered monic

polynomial of index 0.

e The only exceptional scattered monic polynomials f of index 1
over Fgn are X and bX + X9 where b € Fgn satisfying
Normgn/q(b) # 1. When g =2, f(X) must be X.
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Sketch of the proof

e The curve F:

CAX)YT —F(V)XT
FIX.Y) = =y —xys— =0

in PG(2, g") contains no affine point (x, y) such that £ ¢ .
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Sketch of the proof

e The curve F:

CAX)YT —F(V)XT
FIX.Y) = =y —xys— =0

in PG(2, g") contains no affine point (x, y) such that £ ¢ .

e Use Hasse-Weil theorem to show there exist other points.

e We have to show that F contains absolutely irreducible

component over [Fgn.
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Sketch of the proof

e Assume that F = AB. If F has no absolutely irreducible
component, we have a lower bound on (deg A)(deg B).
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Sketch of the proof

e Assume that F = AB. If F has no absolutely irreducible
component, we have a lower bound on (deg A)(deg B).

e By analyzing I(P, AN B), we have an upper bound on
> pl(P,ANB).

e Use Bézout's Theorem >, /(P, AN B) = (deg A)(deg B) to
get contradiction.

e The most involved part is to estimate /(P, AN B) where P is
a singular point.

e When s =1, the old approach does not work. We have to
investigate the “branches” of F centered at P.
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Sketch of the proof

e A branch representation is (x(t), y(t), z(t)) € PG(2,K((t))),
where K((t)) stands for the field of rational functions of the

formal power series. (x(0),y(0),z(0)) is its center.
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Sketch of the proof

e A branch representation is (x(t), y(t), z(t)) € PG(2,K((t))),
where K((t)) stands for the field of rational functions of the
formal power series. (x(0),y(0),z(0)) is its center.

e A branch is an equivalence class of different representations.

e A branch of a plane curve is a branch whose representation
are zero of this curve.

e [(P.GNF)= Zv I(P,G N~y) where ~y runs over all branches
of F centered at P.

e Use local quadratic transform F — F’, there exists a bijection
between the branches of F centered at the origin and the
branches of F’ centered at an affine point on X = 0.
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Classify scattered polynomials

For index s = 0:

e For g >4, X9 is the unique exceptional scattered monic
polynomial of index 0.
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Classify scattered polynomials

For index s = 0:

e For g >4, X9 is the unique exceptional scattered monic
polynomial of index 0.

e For g = 2,3, we can prove the exceptional scattered monic
polynomial of index 0 have at most 2 or 3 consecutive terms.
But we cannot give a complete classification.

For index s > 1:

e The only exceptional scattered monic polynomials f of index 1
over Fgn are X and bX + X9 where b € Fgn satisfying
Normgn/q(b) # 1. When g =2, f(X) must be X.

e For index s > 1, our approach cannot offer a complete

classification.
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Thanks for your attention!
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